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Abstract-This study presents an analytical three-dimensional transient solution of a multi-layer
specially orthotropic panel with finite geometry subjected to an arbitrarily distributed transverse
loading, Governing equations derived from Reissner's functional are solved by applying Fourier or
Laplace transformation in time and enforcing the continuity of traction and displacement com­
ponents between the adjacent layers. Complex material constants are utilized to achieve material
damping. The accuracy of the present analysis is established by considering a thin laminate under
quasi-static and transient loading, The solution of the static analysis is compared with a known
analytical solution, and the transient analysis is compared with a finite element analysis. The results
concerning the transient response of a composite sandwich panel are also presented. Material
damping is found to significantly affect the transient stress and displacement fields of a laminate,
particularly for sandwich composite panels. \1:) 1998 Elsevier Science Ltd.

I. INTRODUCTION

Understanding the impact damage characteristics of laminates and composite sandwich
panels becomes imperative as their use increases in the construction of primary aircraft
components. Sandwich panels are fabricated by bonding thin laminates (face sheets) on
the outer surfaces of a lightweight shear-carrying honeycomb or foam core material. Both
the laminate and sandwich panels are very susceptible to low-velocity (projectile velocity
less than 150 ft/s) impacts such as dropped tools, runway stones, and tire blowout debris,

For solid laminates, visual examination of the impacted surface reveals very little
damage because most of the degradation occurs internally near the back face sheet. With
a sandwich panel, damage in the form of a shallow dent, visible near the impact area, is
due to core crushing and delamination within the face sheet. Associated with the dent is a
delamination at the interface between the face sheet and the core. The physical charac­
teristics of internal damage caused by impact on composite laminates or sandwich panels
can be found in Starnes and Williams (1984) and Nettles et al. (1990), respectively. Even
at relatively low impact speeds, destructive and nondestructive evaluation methods indicate
the primary damage mode involves interlaminar delaminations, resulting in a significant
loss of bending stiffness.

Several mechanisms may participate in creating the local impact damage. Based on
experimental investigations, Starnes and Williams (1984) observed that a transient com­
pressive normal stress is initiated and propagates through the panel during the impact
event, and that the compressive stress wave reflects from the back surface of the laminate
as a tension wave and may produce matrix cracking. In the case of sandwich panels,
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however, the strength of the tension wave is rather weak because the core absorbs the
incoming compressive stress waves. Local transient bending waves are then initiated fol­
lowing several reflections of the transient normal waves. Interlaminar stresses associated
with the local bending may cause damage or, if damage is present, this local bending
deflection may cause the damage to propagate. Deformations due to the overall plate
structural response, however, are initiated long after the transient bending and tension
waves occur.

If the impact phenomenon is treated as a transient contact problem, the analysis is
quite complex. In order to simplify it, Cairns and Lagace (1989), Olsson (1992), and Lee
et at. (1993) decoupled the local contact effects from the global dynamic response of the
plate. In these analyses, the effect of local contact between the indentor and the plate was
invoked in the global dynamic analysis through the transient response of the plate coupled
with the motion of the impactor. Coupling was achieved by modeling the contact behavior
between the impactor and the panel by a spring, whose stiffness was obtained from exper­
imental static indentation tests. Since the extent of the contact region and its force dis­
tribution were not known a priori, the contact behavior between the impactor and the panel
was approximated by performing static indentation tests with spherical and cylindrical
indentors. This assumption facilitated the use of static indentation laws for predicting the
force deformation relationship produced by the impactor. These experimental investigations
of the contact behavior, however, provide only the force-indentation relation, not the extent
of the contact region and the force distribution. Also, analytical models, such as the one
by Cairns and Lagace (1987), exist for predicting the force-indentation relation by assuming
known contact stresses in the form of Hertzian-type pressure distributions.

For damage-tolerant design, accurate assessment of the stress and displacement fields
is required for failure prediction of such components under transient surface loading. The
presence of transverse shear deformation and the general material orthotropy coupled with
transient surface loading, however, renders the analysis rather complex. In order to make
the mathematical statement of the problem tractable, several approximate solution methods
have been introduced. The Classical Laminate Theory (CLT), which accounts for the
coupling effects of non-symmetric laminates, was examined by Pister and Dong (1959),
Reissner and Stavsky (1961), and Dong et at. (1962). This approach cannot account for
the through-the-thickness effects because it disregards the transverse normal and shear
stresses. In addition, the validity of this approach is questionable when the material proper­
ties differ appreciably from layer to layer and/or when a high degree of anisotropy exists in
one or more layers as discussed by Ambartsumyan (1962). Also, the uniform displacement
assumption through the thickness of a cross section becomes invalid for panels subjected
to concentrated dynamic loads on the surface. Therefore, CLT is not suitable for predicting
interlaminar damage caused by impact. Although CLT suffers from these shortcomings, it
provides reasonably accurate transverse deflections for thin laminates.

In order to improve the preceding approach, Chattopadhyay (1977), Whitney and Sun
(1977), Dobyns (1981), Ramkumar and Chen (1983), and Lee et at. (1993) utilized Mindlin's
(1951) plate theory to include the effect of transverse shear deformation. Although Mindlin's
plate theory is a significant improvement over the CLT, it still suffers from an inability to
determine the transverse normal stress. In addition, first-order shear deformation theory
requires the transverse shear stiffness to be determined. The accuracy of the transverse
shear stiffness depends upon a correction factor whose accurate determination is not easily
achieved. An in-depth discussion on the determination of this parameter can be found in
Noor and Burton (I 990a). As with the CLT, this approach also assumes uniform dis­
placement across the thickness, and it is suitable only for moderately thick laminates. For
sandwich panels, the assumption of uniform transverse displacement is not valid because
the core experiences local deformation near the impact region.

Although these investigations may provide adequately accurate results for thin plates
under quasi-static loading, i.e., the time required to increase the magnitude of the applied
load is longer than the period of the lowest vibration mode, their accuracy suffers if the
loading rate is high, i.e., the time required to increase the magnitude of the applied load
from zero to its maximum value is less than half the natural period of the structure.
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Finite element analyses employing plate and shell elements based on the afore­
mentioned plate theories also fail to predict the transient transverse normal stress in the
panel. Using three-dimensional solid elements, Lee et ai. (1984) and Wu and Springer
(1988) modeled a laminate with several layers of elements per ply to capture the through­
the-thickness effects. This type of analysis becomes computationally very intensive when
modeling many layers. Consequently, a rigorous three-dimensional elasticity analysis is
required to accurately determine the transient stress and displacement fields of a composite
panel subjected to transverse impact.

An exact theory of elasticity was used by Mal and Lih (1992) and Lih and Mal (1995)
to model the transient response of a unidirectional laminate -subjected to concentrated and
distributed surface loads. They constructed the solution for an infinite laminate by applying
integral transformation techniques. A three-dimensional exact solution of a finite-geometry
laminate with arbitrary stacking sequence subjected to a static transverse load was
developed by Pagano (1970). Even though the analysis was for a static transverse load, the
solution was still cumbersome, with different general solutions for specific laminate stacking
sequences.

The present study provides a straightforward method to determine the transient solu­
tion of a multi-layer and finite-geometry panel under transverse loading. Each of the
individual layers of the panel is modeled as an elastic, homogeneous, and specially ortho­
tropic material. The finite-geometry panel is supported by rollers and is subjected to
an arbitrarily distributed surface load. The governing equations derived from Reissner's
functional (Reissner, 1950) are solved by applying the Fourier or Laplace transformation
in time while enforcing the continuity of traction and displacement components between
the adjacent layers. This analysis provides an efficient three-dimensional analytical solution
for the stress and displacement fields under specified surface loading representations of the
impact event.

2. PROBLEM STATEMENT

This study is concerned with the stress and displacement fields in a finite-geometry
composite panel subjected to transient surface loading. The geometry and loading of the
panel are illustrated in Fig. I. A Cartesian reference coordinate system (x, y, z) is located
at the corner on the upper surface of the panel. The length and width of the rectangular
panel are denoted by a and b, and its thickness by h. In Fig. 2, the position of the interfaces
in reference to the upper surface of the panel are specified by Zk. The thickness of the kth
layer is given by l = z' - Zk-l.

The panel is composed of layers made of homogeneous, elastic, and specially ortho­
tropic materials. Each layer has elastic moduli E L and E T , shear modulus GLT, and Poisson's
ratios Vn and VTZ where the subscripts L, T, and Z are the longitudinal, transverse, and
thickness directions relative to the fibers. When the material and reference coordinate
systems coincide, the constitutive relationship for the kth layer is represented by

y

z
Fig. I. Panel geometry and loading configuration.
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Fig. 2. Identification of the layers and their position in relation to the reference frame.
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where (Ju and £ij are the components of the stress and strain tensors, respectively, and Du
represent the compliance matrix with five independent constants. For balanced laminates
for which the material and reference coordinate systems do not coincide, a method presented
in the Appendix provides an average compliance matrix. This average compliance matrix
will contain the nine independent coefficients of a specially orthotropic material.

As introduced by Mal and Lih (1992), the dissipation of energy due to material
damping in composite panels is invoked in the analysis by allowing a small percentage of
the compliance matrix to be complex. In general, the material damping is a function of the
frequency; however, in this analysis, the complex compliance is assumed to be a constant
value for all frequencies.

The boundary conditions along the edges of the panel are representative of roller
supports. The edges are free to move in the x and y directions at x = 0 and x = a and at
y = 0 and y = b, respectively. The boundary conditions are expressed as

vk = wk = 0, (J~x = 0 for x =0, x = a, 0 :o:;y :0:; b

Uk = tl = 0, k = 0 for y = 0, y = b, 0 ~ x :0:; a(j 1'\ ~. (2)

where u, v and w represent the displacement components in the x, y, and z directions,
respectively.

The layers in the panel are treated as perfectly bonded with continuous tractions
and displacements across the layer interfaces. Continuity of traction and displacement
components is imposed

(3)

and
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Uk Iz~zk - U
k + 1 Iz~zk = 0

uk Iz~zk - V
k + Ilz~z' = 0

wklz~z' - W
k

+ II=~=' = 0

k=I, ... ,N-l. (4)

The z = z(O) surface of the panel is subjected to an arbitrary distributed load, and the z = ZN

surface is free of tractions. These surface tractions are enforced as

O":ZIZ=ZN=O r:t.=X,y,z

(5)

where p(x, Y, t) represents the external transverse distributed load.

3. SOLUTION METHOD

In this study, the governing equations are derived by applying variational principles
to Reissner's functional (Reissner, 1950), IlR given in the form

(6)

in which B, T, and u are the vectors of body force, traction, and displacement components,
and 8 1 is the surface of the body over which the tractions are applied. In expressing the
strain energy and potential of the applied loads, Reissner's functional treats both the stress
and displacement components as dependent variables. For a transient analysis, the body
force vector 8 consists of the components of the inertial force

(7)

with p being the density.
Applying the variational principles, the stress and displacement components over the

volume of a body yield the governing Euler-Lagrange equations utilized previously by
Noor and Burton (1990b). The time dependency in the equations is removed by applying
either a Fourier transformation

or a Laplace transformation

j(s) = L'" I(t) e- S

! dt

(8)

(9)

where wand s are the transformation variables and i = J"=l. Material damping introduced
in the form of a complex compliance

fi = D+ieD (10)

with a small parameter e, ensures that the integrand in the Fourier transformation vanishes
as time proceeds. Because the integrand in the Laplace transformation converges with time,
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the compliance matrix can be treated as real or complex for Laplace transformation. In the
Fourier or Laplace domain, the transformed governing equations with complex compliance
become

aa~v aa~, ca~z 2 k 'k
~~-' +-'-+-~+y p v =0
ox oy GZ

(11 )

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

in which the symbol" A" denotes the transformed variables and the transformation variable
}' is defined as

(20)

These governing equations are reduced to a system of ordinary differential equations
by representing the stress and displacement components for the kth layer in terms of Fourier
series in which &xxmm &yymm ... , wmn are unknown auxiliary functions for each m and nand
'Y.m = mn/a and f3n = nn/b. Substituting for the stress and displacement components in terms
of their Fourier series in the governing equations leads to

Cf; <XJ

I I [jj~ I a~xmn + jj~ 2 a~ymn + jj~ 3 a~zmn + u~n'Y.ml sin 'Y.m·X sin f3nY = 0 (21)
m= 111=1

'J.j :X

I I [jj~ 2a~xmn + jj;2a~yn", + jj33a~zmn + ii~mf3nl sin 'Y.mX sin f3nY = 0 (22)
m= 111=1

(23)
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(24)

(25)

(26)

(27)

(28)

(29)

The Fourier series representation of the loading function in terms of the transformation
variables becomes

IX) 00

p(x, y, y) = L: L: Pmn(Y) sin amx sin PnY
m= 1 n=l

with the Fourier series coefficient expressed as

(30)

(31)

The resulting ordinary differential equations corresponding to a specific m and n can be
expressed in matrix form as

(32)

h FT { , , , } d ST { , , , A A A} Th I' , ,.were = (Jxxmm (JFFmm (Jvmn an = (JFmm (Jzxmm (Jzzmm Umm Vmm IVmn , e exp lClt lorms
ofM", M 12 , M2h and M22 are given by

[D"
1512

o r M\, ~ M\~ ~ l~
0 1513 am 0

H
k - 1522 o , 0 1523 0 PnMil = D~2

0 1566 0 0 -Pn -am

and
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1544 0 0 0 0 - Pn 0 0 0 0 -I 0

0 1555 0 0 0 -rxm 0 0 0 -I 0 0

0 0 1533 0 0 0
N;2 =

0 0 0 0 0 -I
M;2 =

0 0 0
0 0 0 0 I 0 0 0 0''rP

0 0 0 0 "lp 0 I 0 0 0 0 0

- f3n -rxm 0 0 0 '/p 0 0 I 0 0 0

The matrix representation of the governing differential equations permits the
expression of the vector F k (containing the in-plane stress coefficients) in terms of the vector
Sk (containing the displacement and out-of-plane stress coefficients) as

(33)

Substituting for F k in eqn (32) results in a coupled system of first-order ordinary differential
equations

(34)

with

(35)

The solution to the homogeneous system of equations is readily constructed by assuming

(36)

In constructing the solution, the determinant of the system of equations must vanish in
order for a non-trivial solution to exist. The characteristic equation for the kth layer takes
the form

(37)

with Lk
, Mk

, and N' expressed in terms of the components of Kk
, This form of the

characteristic equation reveals that three of the roots (eigenvalues) are the opposite sign of
the remaining ones: At A;, ).; and - A~, - ;.;, - A;, The coupled system of equations can
be decoupled by allowing

(38)

where Qk is the transformation matrix of eigenvectors.
The decoupled system of equations becomes

(39)

in which N is a diagonal matrix composed of the eigenvalues. By the procedure developed
by Mal (1988), the solution to the decoupled system of equations is written as
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e- ":\2 0 0 0 0 0 k C, k

0 e-A,z 0 0 0 0 C2

Rk (z) = Ek (z)Ck =
0 0 e- AJZ 0 0 0 C3

0 0 0 e
A1Z 0 0 C4

0 0 0 0 eA2Z 0 Cs

0 0 0 0 0 eAJZ C6
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(40)

Using the transformation matrix, Qk, the solution for the out-of-plane stress and dis­
placement coefficients becomes

(41)

Prior to enforcing the boundary and continuity conditions so as to determine the
constants Ck for each layer, the matrix Ek is multiplied by a vector of constants (the first
and second three rows by e Aj!' and e-AjZk-l, respectively) so that it takes a suitable form with
negative exponents in the formulation of layered systems:

eA1 (zk -z) 0 0 0 0 0

0 ei.t(zk -z) 0 0 0 0

0 0 eA~(zk -z) 0 0 0
Ek(z) =

0 0 0 eA1 (Z-!,-I) 0
(42)

0

0 0 0 0 eA~(z-zk-1 ) 0

0 0 0 0 0 e),~(z-zk-l)

In the case of the kth layer, the matrix Ek is evaluated at the k - 1 interface as

(43)

where I is a 3 x 3 identity matrix and

o

o
(44)

with I' equal to the thickness of the kth layer. Similarly, for the interface of the kth layer,

(45)



1228

with

T. Anderson et al.

Decomposing the vector Sk in the form

Sk (z) = {T(Z)}k
U(z)

(46)

and

iizxmn 8 zzmnl (47)

(48)

permits the equations for the stress and displacement coefficients at the k - I and k interfaces
to be rewritten as

(49)

and

(50)

respectively, where Qij are the submatrices of the transformation matrix Q. The vectors
C~ and C~ contain the unknown coefficients consistent with the partitioning of the matrix
Qk for each layer.

The boundary conditions at z = ZO and z = ZN surfaces can be expressed as

(51)

and

(52)

respectively. A recursive relationship is then established to enforce the continuity of out­
of-plane stresses and displacements between the k and k + 1 interfaces as

(53)

(54)

The boundary and continuity conditions are then rewritten in eqn (55) to form the algebraic
equations to determine the unknown layer coefficients C~ and C~
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C l

QLE} Ql2
+

0 0
C~

QL Q12 E} -QLE? -QL C2
+

Q~l Q~2E} -Q~IE? -Q~2 C=-

QN-I Q72-'E~-' -QflE~ -Qf2 C"'-III +

QN-I Q~2-IE~-1 -Q~IE~ -Q~2
C~-I

21

Qf, Q'~2E;'"
c'"0 0 +

C"':

T 1(Zo)

0

0

0

(55)

0

0

0

0

The solution to this system of algebraic equations leads to the out-of-plane stress and
displacement coefficients through the substitution of Ck into eqn (41). The in-plane stress
coefficients are then obtained by eqn (33). The process of determining the stress and
displacement coefficients is repeated for each value of m and n in the Fourier series
representation.

The stress and displacement components determined as a function of the trans­
formation variable are then transformed back to the time domain through Fourier or
Laplace inversion integrals.

4. NUMERICAL RESULTS

A quasi-static response of a laminate is considered in order to validate the present
analysis with the analytical solution given by Pagano (1970). After validating the present
analysis, two transient analyses are performed to investigate the response of a thin laminate
and a sandwich panel. The solution concerning the thin laminate is compared with that of
a finite element analysis. The transient response of a sandwich panel with an absorptive
core is examined for two damping parameters. The face sheets are free of damping. The
results in the time domain are obtained by performing numerical inversions of Fourier or
Laplace transformations.

Static analysis ofa thick laminate
In order to verify the present analysis, a statically loaded rectangular panel is considered

and the results are compared with the well-known analytical solution by Pagano (1970).
The static sinusoidal loading is prescribed by the function

(56)

where (J is the amplitude of the loading. The plate is of length a in the x-direction and of
width b = 3a in the y-direction. The span-to-thickness ratio, s(s = a/h), is equal to 4.
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Table I. Normalized solutions for Pagano (1970), CLT, and the present analysis

Pagano (1970)

Normalized stress and
displacement

,,~,(aI2,b/2, 0)
,,~,(aI2, b/2, h)
,,~, (aI2, b12, h/3)
,,:,(0, b/2, h12)
"~JaI2, 0, h12)
,,~,.(O, 0, 0)
,,~,.(O, 0, h)
w*(aI2, b12, h12)

3-D elasticity
solution

1.14
-1.10

0.109
0.351
0.0334

-0.0269
0.0281
2.82

CLT

0.623
-0.623

0.0252
0.440
0.0108

-0.0083
0.0083
0.503

Present analysis

1.14
-1.10

0.108
0.351
0.0327

-0.0268
0.0282
2.82

The material coefficients used in the analysis are the same as those used by Pagano
(1970) and given by

EL = 25.0 X 106 psi

E T = 1.0 X 106 psi

GLT = 0.5 X 106 psi

G TZ = 0.2 X 106 psi

VLT = V TZ = 0.25 (57)

with a panel lay-up of [0°/90°,/0°]. It is worth noting that this material is not transversely
isotropic.

A simple modification to the present formulation is required to determine the static
solution. This is achieved by setting the body force terms in Reissner's functional equal to
zero. It is identical to solving the transient analysis with the transformation variable equal
to zero.

For direct comparison with the results provided by Pagano (1970), the stress and
displacement components are normalized as

(58)

A comparison of the results is presented in Table I. Excellent agreement is found between
Pagano's three-dimensional elasticity solution and the present analysis. For reasons pre­
viously discussed, the solution provided by CLT was expected and does differ greatly from
the solutions provided by Pagano and the present analysis.

Transient analysis ofa thin laminate
A transient analysis is performed on a thin, square laminate with length and thickness

equal to 10 inches and 0.25 inch, respectively. The laminate consists of 3 layers of equal
thickness with a lay-up of rOc /90 0 /0°]. The material properties are the same as those given
by Pagano (1970) and the density of the material is 2.5 x 10- 4 slugs/in3

.

The panel is subjected to a non-uniform distributed load applied over a square region
at the center. The loading is represented by p(x, y, t) = g(x, y)h(t), where
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g(x,y) = - (x-4/(x-6/(y-4)2(y-6)2; 4 ~ X ~ 6

(59)

and

{
I'

h(t) = '
0;

t ~ 0.001 s

t> 0.001 s
(60)

The function g(x, y) is approximated by 15 terms in the Fourier series representation.
An inverse fast Fourier transfonn is performed at 16,384 points between 0 and I

second. The damping parameter, e, ensuring the integrand in eqn (8) to be convergent, is
taken as 0.025. Although the period just subsequent to the impact is of interest, a I-second
time period is required to allow the panel's vibrations to attenuate. Upon completion, only
the time period up to 0.0015 second is examined, as shown in Figs 3-8.

In order to capture the influence of the damping parameter, the results are compared
with those obtained by applying the Laplace transformation and the finite element method.
The numerical inversion routine utilized for Laplace transformation does not converge
efficiently for all functions. Therefore, only the displacement at a point will be examined
and compared with the results obtained from the Fourier transformation and the finite
element analysis. The inverse FFT calculation proves to be a more efficient method for the
other stress and displacement components.

In the finite element analysis conducted by using ABAQUS (Pawtucket, RI) the square
plate is modeled with a 20 x 20 element mesh. The elements utilized in the analysis are of
ABAQUS type S8R. These elements are eight-node shell elements with reduced integration.
Although these shell elements are developed from the classical plate theory. they are
intended to model thick panels, where estimates of the interlaminar shear stresses are
required. Unlike the in-plane stresses, the transverse shear stresses are not calculated from
the constitutive behavior of the shell. Instead, subsequent to the analysis, the ABAQUS
finite element program estimates the transverse shear stresses based on a piecewise quadratic
variation of the transverse shear stress across the section. under pure bending about one
axis. These elements are still, however, incapable of determining the transverse normal
stress.

A comparison of the finite element results with those determined by the present analysis
are presented in Figs 3-8. Excellent agreement is found for the transverse displacement

- FFf}_ _ LT Present Analysis

------ Finite element method

,x
i

i

~ 2.0

~

0.5 1.0 1.5 2.0
Time, t (msec)

Fig. 3. Variation of vertical displacement. 1I', as a function of time for the thin laminate at x = Ila/20,
y = 11b/20, and == h13.

'2 2.5 ,-------------------,
v
b
><
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0
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5'

-208
o'

~- -40

~- \'-'
t)= -60 '\

'"'"!i
'""Ol
E -80
0
Z

-- Fmite element method
- - Present analysis

-100
1.5 2.00.0 0.5 1.0

Time, t (msec)

Fig. 4. Variation of normal stress, G u , as a function of time for the thin laminate at x = a/20,
y = Ilb/20, and z = O.

-2

-4

-6

-- Finite element method
- - Present analysis

0.,.--------------------,

-8 +--------r----------,-----,--------i
0.0 0.5 1.0 1.5 2.0

Time, t (msec)

Fig. 5. Variation of normal stress, G,,>, as a function of time for the thin laminate at x = a/20,
y = Ilb/20, and z = O.

between the three solution methods, suggesting the small damping parameter included in
the Fourier transformation formulation has relatively little effect shortly after the impact
event. Close agreement is also observed between the ABAQUS solutions and Fourier
transformation solutions for the in-plane and transverse and shear stresses.

Transient analysis ofa sandwich panel
A sandwich panel with elastic face sheets without damping and an absorptive core

with damping is subjected to transverse impact. The panel is composed of layers with a
stacking sequence of rOC/900 fcore/90° /OU]. The material properties of the elastic face sheets
are the same as those used by Pagano (1970). The transversely isotropic material properties
of the core are
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0.8..-:------------------,
-- Finite element method
- - Present analysis

0.0

~ 0.4
.....
~

,-.

'"S-
O• 0.6

~.....

-0.2:+----,----~---r_--___l
0.0 0.5 1.0 1.5 2.0

TIlDe, t (msec)

Fig. 6. Variation ofin-plane shear stress,IT,!" as a function of time for the thin laminate at x = Ila/20,
y = Ilb/20, and z = O.

/

-- Finite element method
- - Present analysis

....... 0.5..-:----------------"1
],
~
o·
~ 0.0..........

~.....
'J -0.

i
!;l

~

~
~ -1..5+------,--------r------r----1

0.0 0.5 1.0 1.5 2.0
Time, t (msec)

Fig. 7. Variation of transverse shear stress, (J", as a function of time for the thin laminate at
x = Ila/20, y = Ilb/20, and z = hj3.

ETz = 0.04 X 106 psi

ELL = 0.5 X 106 psi

GLT = 0.06 X 106 psi

¥TZ = ¥TL = 0.25 (61 )

and the density of the core is 5.4 X 10- 5 slugs/in3 (3 Ibs/ft3
). The panel is 10 inches square

and the thickness of the plies and core are 0.02 and 0.5 inch, respectively. The panel is
subjected to the loading distributionp(x,y, t) = g(x,y)h(t), where
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(62)

and

{
I'

h(t) = '
0;

t~O.OOls

t>O.OOls
(63)

While the face sheets are free of damping, two different damping parameters, 0.025
and 0.1, are considered for the core. A numerical inverse fast Fourier transform is applied
with 16,384 points over time periods of 1.0 and 0.8 second for the lightly and heavily
damped cases, respectively. Again, the panel's vibrations attenuate within the specified time
periods.

The displacement of a point located beneath the loading surface at the core/face sheet
interface (x = 5.5, y = 5.5, and z = 0.04) versus time is presented in Fig. 9. The results
reveal that the stress and displacement fields are highly dependent upon the amount of
damping used in the analysis. However, the peak magnitudes of the displacement and stress
components are not sensitive. The displacement of the panel with a lightly damped core
oscillates at a higher frequency than the panel with a damping parameter of 0.1. The normal
stresses (J", and (J,T respond in a manner comparable with the stresses in the lightly damped
panel preceding the heavily damped panel as displayed in Figs 10 and II. The in-plane and
transverse shear stresses are observed in Figs 12-14 to respond in a manner consistent with
the overall bending of the plate.

5. CONCLUSIONS

In order to predict damage due to an impact, this analysis provides a three-dimensional
analytical solution for the stress and displacement fields under specified surface loading
resulting from transverse impact. A multi-layer rectangular panel consisting of elastic,
homogeneous, and specially orthotropic layers is supported by rollers and is subjected to an
arbitrary transverse loading distribution. The governing equations derived from Reissner's
functional are solved by applying the Fourier or Laplace transformation in time while
enforcing the continuity of tractions and displacements. In this manner, the stress and
displacement fields required for damage characterization are determined analytically.
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The present solution method was verified by comparing the static results from this
analysis with those provided by Pagano (1970). The comparison yields remarkable agree­
ment between this analysis and Pagano's solution and demonstrates the CLT's inability to
accurately model relatively thick laminates.

The finite element method was used to construct the transient solution of a thin multi­
layer panel subject to a transverse loading distribution. The transverse displacement results
of the inverse Fourier and inverse Laplace transformations were compared with the results
of the finite element analysis and are in favorable agreement. Because the plate elements
used in the finite element analysis are incapable of determining the transverse normal stress,
this quantity could not be compared.

This analysis provides the basis for many future investigations. The impact analysis
and contact phenomenon can be coupled by incorporating the methods introduced by
Singh and Paul (1974). This method is an itenttive procedure that simultaneously determines
the unknown contact area and loading distribution. In this manner, the need for an artificial
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loading distribution, such as Hertzian loading, is eliminated. With the three-dimensional
analytical transient solution for an impacted panel, various damage criteria can then be
used to evaluate the structural integrity of the laminate.

The most important subject that needs to be addressed in the future is material
damping. In the thin laminate analysis, the damping parameter B is treated as if small,
giving an essentially elastic solution. The sandwich panel analysis, however, contained
elastic face sheets without damping laminated to a core with damping. As demonstrated
by the response of the sandwich panel, the stress and displacement fields are highly depen­
dent upon the damping factor.
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Solution of finite-geometry panels 1237

101-,-------------------,

3.02.5

--&",0.025
- -&"'0.1

I
I
,
I
I,

II'
I ',

, \ I
I

0.50.0

o

1.0 1.5 2.0
Time, t (msec)

Fig. 13. Variation of transverse shear stress, (T,C' as a function of time for the sandwich panel.

2'(h---------------------,

-40+----.---,----,----.,---,.--------1

--&",0.025
-&",0.1

I

I

I
I
I
I
I

~II
...... /'oj \

\/

o

-10

3.02.50.50.0 1.0 1.5 2.0
Time, t (msec)

Fig. 14. Variation of transverse shear stress. (Te," as a function of time for the sandwich panel.

REFERENCES

Ambartsumyan, S. A. (1962) Contributions of the theory of anisotropic layered shells. Applied Mechanics Review
15(4).245-249.

Cairns, D. S. and Lagace, P. A. (1987) Thick composite plates subjected to lateral loadings. Journal 0/ Applied
Mechanics 54, 611--616.

Cairns. D. S. and Lagace, P. A. (1989) Transient response of graphite/epoxy and kevlar/epoxy laminates subjected
to impact. AIAA Journal 27(1 I), 1590-1596.

Chattopadhyay. S. (1977) Response of elastic plates to impact including the effect of shear deformation. In
Proceedings of the 14th Annual Meeting o/the Society 0/ Engineering Science, Inc. ed. G. C. Sih. Lehigh
University, Bethlehem, PA. pp. 127-138.

Dobyns, A. L. (1981) Analysis of simply-supported orthotropic plates subject to static and dynamic loads. AIAA
Journal 19(5), 642-650.

Dong, S. 8., Pister, K. S. and Taylor, R. L. (1962) On the theory of laminated anisotropic shells and plates.
Journal 0/ (he Aerospace Sciences 29(8).969-975.

Lee. 1. D .. Du, S. and Liebowitz. H. (1984) Three-dimensional finite element and dynamic analysis of composite
laminate subjected to impact. Computers and Structures 19, 807-813.

Lee, L.l .. Huang, K. Y. and Fann, Y.l. (1993) Dynamic responses of composite sandwich plate impacted by a
rigid baIL Journal o/Composite Materials 27(13).1238-1256.



1238 T. Anderson et al.

Lih. S.-S. and MaL A. K. (1995) Elastic waves from a distributed surface source in a unidirectional composite
laminate. Impact, Wares and }/-acture eds. R. C. Batra, A. K. Mal and G. P. MacSithigh. AMD-Vol. 205.
ASME, New York. pp. 209-219.

MaL A. K. and Lih, S.-S. (1992) Elastodynamic response ofa unidirectional composite laminate to concentrated
surface loads: part I. Joumal o(Applied Mechanics 59,878-892.

Mal. A. K. (1988) Wave propagation in layered compositc laminates under periodic surface loads. Wart' Motion
10, 257-266.

Mindlin. R. D. (1951) Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates. Journal
of Applied Mechanics 18, 31-38.

Nettles. A. T., Lance. D. G. and Hodge. A. J. (1990) An examination of impact damage in glass/phenolic and
aluminum honeycomb core composite panels. NASA Technical Paper 3042.

Noor, A. K. and Burton, S. B (l990a) Assessment of computational models for multilayered composite shells.
Applied Mechanics Rain.. 43(4).67 -97.

Noor. A. K. and Burton, W. S. (1990b) Three-dimensional solutions for antisymmetrically laminated anisotropic
plates. ASME Journal oj'Applied Mechanics 57, 182-188.

Olsson. R. (1992) Impact response of orthotropic composite plates predicted from a one-parameter differential
equation. AIAA Journal 30(6). 1587-1596.

Pagano, N. J. (1970) Exact solutions for rectangular bidirectional composites and sandwich plates. Joumal of
Composite Materials 4,20 34.

Pister, K. S. and Dong, S. B. (1959) Elastic bending of layered plates. Journal oj'the Engineering i'vfechanics
Dirision, Proceedings ot'rhe American Sodel.!· ot' Cit'il Engineers EM4, 1-10.

Ramkumar. R. L. and Chen. P. C. (1983) Low-velocity impact response oflaminated plates. AIAA Journal 21(10).
1448 1452.

Reissner. E. and Stavsky, Y. (1961) Bending and stretching of certain types of heterogeneous aeolotropic elastic
plates. Joul'l1al ot'Applied Mechanics 28, 402 408.

Reissner. E. (1950) On a variational theorem in elasticity. Journal oj'Mathematics and Physics 24,90-95.
Singh. K. P. and PauL B. (1974) Numerical solution of non-hertzian elastic contact problems. Journal oj'Applied

Mechanics 41 484--490.
Starnes. J. H .. Jr. and Williams. J. G. (1984) Failure characteristics of graphite/epoxy structural components

loaded in compression. NASA TM-84552.
Whitney, J. M. and Sun. C.-T. (1977) Transient response of laminated composite plates subjected to transverse

dynamic loading. Journal of the Acoustical SOciell' of America 61( I). 101 104.
Wu. H.-S. T. and Springer. G. S. (1988) Impact induced stresses. strains. and delaminations in composite plates.

Journal of Composite Materials 22, 533 560.

APPENDIX: AVERAGE MATERIAL CONSTANTS FOR BALANCED LAMINATES

Since only specially orthotropic materials can be examined using this formulation. laminates with plies
oriented at other than 0 or 90 cannot be analyzed. A method exists, however, that determines the average
specially orthotropie stiffness matrix for a halanced laminate. A balanced laminate is a panel that has a negatively
oriented ply for every positively oriented ply. For example. for every + 35 ply there is a ~ 35 ply. Thus. this
analysis can be expanded to model any balanced laminate if an average stiffness or compliance matrix is determined.

To determine the average stiffness matrix. the stiffness matrix of each ply in the global coordinates is required.
The stress-strain relationship for the kth layer of a laminate can be represented as

or

(/ = e'E' (AI)

(A2)

where the "." denotes the quantities in the local reference frame. The unit vectors of the local reference frame
can he written in terms of the direction cosines and the global unit vectors as

!" r{' Jli l °ri
1""1 - I, nl~ n, I"' (. (A3)

I,n,! I, 1110, 11, 1,": J

With these direction cosines. stresses and strains can be transformed to the global reference frame through the
transformation

(r' = T'O'"

where

E' = T'l' (A4)
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Ii I~ Ii 21,1, 21,1, 21,1,

mf n1~ n1~ 2m,m, 2m,m, 2m,m,

T'= n~ 11~ n~ 211,11, 211,11, 2n l 11 2

min] m2 n2 tn3113 (m,113 +m,I1,) (m,11 3+m,I1,) (m,I1,+m,I1,)

1,11, 1,11, 1,11, (I,I1J +1,11,) (1,11, +1,11,) (1,11,+1,11,)

I,m, I,m, I,m, (I,m, +/,m,) (I,m,+/,m,) (I,m, +I,m,)

Substituting eqns (A3) and (A4) into (A 1) while noting that

TkT" = I

yields

Thus, the transformation of the stiffness matrix from local coordinates to global coordinates is

e l, = T'CkT",

The average stiffness matrix, e, of a balanced laminate is then represented by

1 "e = - It"e"
h,
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(AS)

(A6)

(A7)

(A8)

(A9)

which represents an average weighting of the stiffness matrix based on the thickness of the layer, Provided the
laminate is balanced, e will represent a specially orthotropic material with 12 nonzero coefficients, 9 of which are
independent, This averaging process is expected to provide reasonably acceptable results, provided the paired
balancing plies are located closely to one another and the plies are relatively thin.


